

Tracking Nutrient Metabolism and Cellular Partitioning by Multimodal Molecular Imaging

Zusammenfassung

The partitioning of nutrients under conditions of energy oversupply is the starting point of many metabolic pathologies associated with a sedentary lifestyle. In this context obesity, where energy influx exceeds energy expenditure, drives the prevalence of type 2 diabetes, fatty liver and cardiovascular disease. However, the metabolic fate of excess nutrients in the body and their contribution to metabolic disease are not well understood. This project uses a unique combination of imaging modalities and tracer techniques to investigate tissue biochemistry and sub-cellular partitioning of fuel metabolites in animal models of metabolic health and disease. *In vivo* positron emission tomography (PET) and magnetic resonance (MR) based deuterium molecular imaging (DMI) are used to assess glucose and fatty acid fluxes on the organ-/tissue level and are complemented with correlative transmission electron microscopy (TEM) and nanometer-scale secondary ion mass spectrometry (NanoSIMS) for visualization of metabolite distribution patterns within single cells. We apply these high-end imaging techniques to study physiologic states (fasting/refeeding) and metabolic disease (fat vs carbohydrate-rich diet; obesity). In combination with metabolic experiments, our multimodal imaging-setup paves the way towards a more comprehensive understanding of the physiology and pathophysiology of fuel metabolism and shows great potential for broader application in preclinical and translational research.

Wissenschaftliche Disziplinen:

302043 - Magnetic resonance imaging [MRI] (40%) | 302054 - Nuclear medicine (30%) | 104002 - Analytical chemistry (30%)

Keywords:

positron emission tomography, magnetic resonance, NanoSIMS, deuterium molecular imaging, glucose, fatty acids, metabolism

Principal Investigator: Martin Krssak

Institution: Medical University of Vienna

ProjektpartnerInnen: Cecile Philippe (Medical University of Vienna) (Co-Principal Investigator)
Arno Schintlmeister (University of Vienna) (Co-Principal Investigator)

Status: Laufend (01.05.2020 - 31.10.2023) 42 Monate

Fördersumme: EUR 699.980

Weiterführende Links zu den beteiligten Personen und zum Projekt finden Sie unter
https://archiv.wwtf.at/programmes/life_sciences/LS19-046